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Abstract
It has become clear that the self-consistent Ornstein–Zernike approximation
(SCOZA) is a microscopic liquid-state theory that is able to predict the location
of the critical point and of the liquid–vapour coexistence line of a simple fluid
with high accuracy. However, applications of the SCOZA to continuum systems
have been restricted up to now to liquids where the interatomic potentials
consist of a hard-core part with an attractive two-Yukawa-tail part. We present
here a reformulation of the SCOZA that is based on the Wertheim–Baxter
formalism for solving the mean-spherical approximation for a hard-core–multi-
Yukawa-tail fluid. This SCOZA version offers more flexibility and opens
access to systems where the interactions can be represented by a suitable linear
combination of Yukawa tails. We demonstrate the power of this generalized
SCOZA for a model system of fullerenes; furthermore, we study the critical
behaviour of a system with an explicitly density-dependent interaction where the
phenomenon of double criticality is observed. Finally, we extend our SCOZA
version to the case of a binary symmetric mixture and present and discuss results
for phase diagrams.

1. Introduction

During the past few decades liquid-state physicists have devoted much effort to the development
of microscopic theories that allow the calculation of the structural and thermodynamic
properties of simple liquids (and their mixtures) with high accuracy (for an overview see,
for instance, [1, 2]). The development of such concepts at a high level of sophistication in
combination with very accurate numerical algorithms has brought us to a position where for
large parts of the density–temperature plane these methods produce results that are practically
indistinguishable from data obtained in computer simulations. However, this success is no
longer guaranteed as we leave the liquid-state region and approach the liquid–gas coexistence
curve and/or the critical region where typically the following problems are observed: the shape
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of the coexistence curve is not reproduced correctly—sometimes its two branches are even
left unconnected in the critical region; critical points are not located correctly; and the related
critical exponents do not agree with the exact ones.

The fact that an exact localization of the phase boundaries and an accurate determination
of the critical properties is not within reach for conventional microscopic liquid-state theories
is of course highly unsatisfactory. Therefore, again much effort has been dedicated during
the past few years to the development of advanced microscopic liquid-state theories that
remain successful even in the critical region: at present, two concepts are available that were
specially developed to cope with the problems encountered in the critical region and near
the phase boundaries. One is the self-consistent Ornstein–Zernike approximation (SCOZA),
proposed by Stell and Høye in the 1970s [3, 4], and reformulated in different versions in
subsequent work with several co-authors (for a recent presentation see, for instance, [5, 6]).
The other concept is the hierarchical reference theory (HRT), due to Reatto and co-workers [7].
Both theories try to cope with the difficulties encountered in the critical region with different
strategies: while the HRT merges concepts of renormalization group theory with theoretical
liquid-state approaches, the SCOZA starts from a generalized mean-spherical ansatz, enforcing
consistency between different thermodynamic routes. The high level of sophistication of these
two concepts (compared to conventional techniques) leads of course to considerably more
complex formalisms which, in turn, cause substantial numerical and computational problems.

In this contribution we shall focus on the SCOZA and present a generalization of its
formalism which allows a broader applicability for continuum systems. Although the SCOZA
was proposed more than 20 years ago, practical applications are, as a consequence of the
complexity of its formalism, still rather scarce. Its real breakthrough came in 1996 [8], when
a reformulation of the SCOZA partial differential equation (PDE) made access to subcritical
temperatures possible. Since then, the SCOZA has been applied to a few discrete [8–15] and
continuum systems [5, 6, 16]. Here we focus on the continuum case, where applications have
been restricted up to now to the one-component case and to hard-core (HC) interactions with an
adjacent attractive potential built up by linear combination of up to two Yukawa tails (offering
the possibility to approximate a Lennard-Jones (LJ) interaction rather accurately [6]). The
binary case has been heretofore treated only in the special context of decorated lattice models
that are isomorphic to the nearest-neighbour Ising model [15].

From present SCOZA applications we know the following: the liquid–vapour branches
and the critical point are localized very accurately (within 1–2% of the best numerical
estimates). Various effective critical exponents (defined as slopes of curves of logarithmic
plots) were investigated and it was found that they are very close to the estimated exact form
except very close to the critical point. Above the critical point the theory yields the same critical
exponents as the spherical model but this regime is very narrow, so the thermodynamics and
effective exponents are in good agreement with the true critical behaviour until the temperature
differs from its critical value by �1%. On the coexistence curve, on the other hand, the
exponents are neither spherical nor classical and turn out to be very accurate. An analytic study
of the SCOZA critical exponents and the scaling behaviour in three dimensions was given by
Høye et al [17]: it was seen that standard scaling is not fulfilled, but rather a generalized form
of scaling.

The limitation of the SCOZA to HC–two-Yukawa-tail interactions can be traced back to
the availability of the semi-analytic solution of the mean-spherical approximation (MSA) for
such a system [4, 18]: the analytic expressions represent a very valuable framework and hence
lead to considerable simplifications in the formalism and the implementation of the SCOZA.
In contrast, SCOZA applications for an arbitrary potential which cannot benefit from the
availability of an analytic framework and hence require a fully numerical treatment are—at
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least for the moment—out of reach. In this contribution we propose a generalization of the
SCOZA, that allows a broader application of this advanced liquid-state method. It is based
on, instead of the Laplace-transform route used in [5], the more elegant and more flexible
Wertheim–Baxter factorization route for solving the MSA for HC systems with a formally
arbitrary number of Yukawa tails; the required expressions are summarized in [19]. Now a
larger variety of realistic potentials come within reach, while fully maintaining the attractive
features of the availability of the semi-analytic MSA solution: as long as these interactions are
continuous, they can be approximated by a suitable linear combination of Yukawa tails. Further,
we have extended the SCOZA to the binary case; practical applications are restricted, however
(due to the high numerical costs), to the simplified symmetric binary mixture; again we benefit
from the availability of the MSA solution for a mixture of HC–Yukawa-tail systems [19].

We first demonstrate the power of our generalization for the one-component case. Since
previous studies have shown that the phase diagram of a LJ system can be predicted very
accurately, we focus instead on another test system, i.e. on the model fullerenes C60 and C70,
described by the sphericalized Girifalco potential [20]. The interaction of this potential has a
much stiffer repulsive part compared to the LJ interaction; its attractive well is much shorter
ranged and much deeper. These features lead to a very specific phase diagram (the question of
the existence of a liquid state is not yet completely settled) and to numerical problems in other
advanced liquid-state methods [21]. In contrast, the SCOZA, however, is able to reproduce
the localization of the critical point as predicted in computer experiments with high accuracy.

We then study the phase behaviour of a HC system with an explicitly density-dependent
attractive Yukawa tail (introduced via a density-dependent inverse screening length) and obtain,
for a particular form of the density dependence, phase diagrams with two first-order phase
transitions (liquid–vapour and liquid–liquid), each with its own critical point. Finally we
investigate the phase diagram of a binary symmetric mixture; we observe three archetypes
of phase diagrams, characterized by the loci where the line of the second-order demixing
transition (λ-line) intersects the first-order liquid–gas transition line. The sequence of these
three types of phase diagram is triggered by a parameter α which is the ratio between the unlike
and the like interactions.

This contribution is organized as follows. In the next section we introduce the main ideas
of the generalized formalism of the SCOZA. In section 3 we apply this advanced liquid-state
method to the systems mentioned above (both one- and two-component cases) and discuss the
results. The paper is closed with concluding remarks.

2. Theory

In this contribution we shall restrict ourselves to systems with pair interactions �(r) consisting
of a repulsive HC (diameter σ ) and an adjacent attractive tail w(r):

�(r) =
{

∞ r � σ

w(r) r > σ .
(1)

In particular we focus on pair interactions that are linear combinations of Yukawa tails (labelled
by Greek indices), i.e.

w(r) =
∑

ν

Kν

r
exp[−zν(r − σ)]. (2)

Further, we allow w(r) to be explicitly density dependent (w(r) = w(r; ρ)), ρ being the
number density. To be more specific, we introduce a density-dependent inverse screening
length. In the binary case above, expressions generalize in a straightforward way: we now
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have a set of three interactions �i j(r), or wi j(r), characterized by a set of (additive) diameters
σi j and contact values Kν;i j (i, j = 1, 2); we restrict ourselves to potentials with one Yukawa
tail only. Further, the mixture is characterized by the total density ρ and the concentration x
of species 1; partial number densities are defined via ρ1 = xρ and ρ2 = (1 − x)ρ.

2.1. SCOZA—the one-component case

The SCOZA is based on the OZ relation [22]

h(r) = c(r) + ρ

∫
dr′ c(r ′)h(|r − r′|) (3)

supplemented by a MSA-type closure relation, i.e. [8]

g(r) = 0 for r � σ (4)
c(r) = cHC(r) + K (ρ, T )w(r) for r > σ. (5)

h(r) and c(r) are the total and the direct correlation functions, g(r) = h(r) + 1 is the pair
distribution function, and T is the temperature. cHC(r) is the direct correlation function
for the HC reference system for which we have chosen for convenience the Waisman
parametrization [23], which is known to reproduce simulation results for the structural
properties with high accuracy. For r > σ , cHC(r) = K0/r exp[−z0(r − σ)], where K0

and z0 are known functions of ρ (see appendix A of [5]). The state-dependent function
K (ρ, T ) in (5) is not fixed a priori and is determined by the requirement of thermodynamic
consistency between the energy and the compressibility route: let χred = ρkBT χT be the
reduced (dimensionless) isothermal compressibility, given via the compressibility route by

(χred)
−1 = 1 − ρc̃(q = 0) (6)

where the tilde represents the Fourier transform; further, let u be the excess (over that of the
ideal gas) internal energy per volume, given via the energy route by

u = 2πρ2
∫ ∞

σ

dr r2w(r)g(r); (7)

if χred and u come from a unique Helmholtz free energy, then they are related via

ρ
∂2u

∂ρ2
= ∂

∂β

(
1

χred

)
. (8)

For the special choice of the pair interaction w(r) (cf (2)) and if one uses the Waisman
parametrization for cHC(r), the SCOZA benefits from the availability of the semi-analytic
solution of the MSA. Two different approaches to this solution have been proposed in the
literature: the (original) Laplace-transform route [4, 18] and the Wiener–Hopf factorization
technique introduced by Wertheim and Baxter [24, 25]. The first one uses a rather heavy
formalism which leads to tractable expressions for up to two Yukawa tails; the latter approach
is more elegant and more flexible and provides—even for an arbitrary number of Yukawa
tails—compact expressions; they are summarized in [19] in a form suitable for numerical
evaluation. Although there has been a great deal of important development of the application
of the Baxter approach to the case of an arbitrary number of Yukawa tails (see [26–29] and
references therein), we know of no formulation in the context of SCOZA or quantitative studies
that are directly relevant to use in the SCOZA. In the following we outline the formulation of
the SCOZA for many Yukawa potential tails using the Baxter approach, and refer the reader
interested in a more detailed presentation to [30].
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Under certain conditions [31], the solution of the OZ equation is equivalent to the solution
of the following two integral equations:

2πrc(r) = −Q′(r) + ρ

∫
Q(t)Q′(r + t) dt (9)

2πrh(r) = −Q′(r) + 2πρ

∫
(r − t)h(|r − t|)Q(t) dt (10)

introducing the so-called factor function Q(r). For a system with n Yukawa tails the factor
function is characterized by (2n + 2) as yet undetermined coefficients (a, b, Cν , and Dν), i.e.

Q(r) = Q0(r) +
∑

ν

1

zν

Dνe−zν (r−σ ) (11)

Q0(r) =



a

2
(r − σ)2 + b(r − σ) +

∑
ν

1

zν

Cν[e−zν (r−σ ) − 1] 0 < r < σ

0 r > σ .
(12)

Introducing further the Gν via

Gν = zν

∫ ∞

σ

r exp[−zν(r − σ)]g(r) dr (13)

one can derive (along with the MSA closure relation) a set of 2n non-linear equations for
the 2n unknowns Gν and Dν : n of these equations are linear in the Dν ; their solution yields
Dν = Dν(ρ, Gν). Finally one can also relate a to these unknowns, leading thus to an expression
a = a(Gν, Dν); the relations are summarized in [19].

The factorization formalism leads to

(χred)
−1 =

(
a

2π

)2

(14)

so (8) now becomes

ρ
∂2u

∂ρ2
= 2

a

(2π)2

∂a

∂u

∂u

∂β
. (15)

Inserting a = a(Gν, Dν) with Dν = Dν(ρ, Gν) into the PDE (15), one arrives at

ρ
∂2u

∂ρ2
= 2

a

(2π)2

(∑
ν

∂a

∂Gν

∂Gν

∂u

)
∂u

∂β
= B(ρ, u)

∂u

∂β
(16)

once a, ∂a/∂Gν , and ∂Gν/∂u have been expressed as functions of ρ and u. The required
expressions are obtained by implicit differentiation of a set of non-linear equations in the Gν and
u that are summarized in [30]. Equation (16) is now a quasilinear PDE of diffusion type which
has to be solved numerically (as described in detail in [9]) on a (β, ρ) grid, [0, β f ] × [0, ρ0],
with a suitable initial condition (for β = 0) and suitable boundary conditions (here, the high-
temperature approximation for the upper density limit ρ0σ

3 = 1). In contrast to conventional
liquid-state theories, the SCOZA can be solved up to the critical point; special care has to be
taken in the region of instability (characterized by a negative compressibility) which has to be
excluded from the region of integration.

From the solution of the PDE (16) we obtain the full information about the structure and
the thermodynamic properties of the system. For instance, the pressure P and the chemical
potential µ (i.e. two quantities required to determine the phase behaviour) are calculated from

∂

∂β
(β P) = −u + ρ

∂u

∂ρ
(17)

∂

∂β
(βµ) = ∂u

∂ρ
(18)

via thermodynamic integration.
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2.2. SCOZA—the binary symmetric mixture

In the case of a binary mixture, the OZ relation (3) and the core condition (4) for the partial
PDFs gi j(r) are generalized in an obvious way. The closure relations for the direct correlation
functions (5), generalized to the binary case and restricting ourselves to one single Yukawa
tail, now read

ci j(r) = cHC;i j(r) + Ki j(ρ, T, x)wi j (r) for r > σi j . (19)

In the general binary case the three as yet unknown functions Ki j(ρ, T, x) are determined via
the following three (partial) consistency relations:

∂2u

∂ρi ∂ρ j
= ∂

∂β
[−c̃i j(q = 0)] i, j = 1, 2. (20)

Again, u is calculated via the energy route (generalized expression (7)). So one arrives at a
coupled set of three PDEs for the three unknown functions Ki j . Due to the complexity of the
general binary case, we restrict ourselves here to the binary symmetric case, i.e. we assume
that

�11(r) = �22(r) = 1

α
�12(r). (21)

This leads to considerable simplifications: first, σi j = σ and hence we can use cHC;i j(r) =
cHC(r), i.e. the Waisman parametrization for the direct correlation function of the HC reference
system mentioned above; second, the as yet undetermined functions Ki j(ρ, T, x) satisfy the
following symmetry relations:

K11(ρ, T, x) = K22(ρ, T, 1 − x) (22)
K12(ρ, T, x) = K12(ρ, T, 1 − x). (23)

Under the additional, simplifying assumption K11(ρ, T, x) = K12(ρ, T, x) we end up with
one function K (ρ, T, x), that is symmetric and that is related to the Ki j via

K (ρ, T, x) = Ki j(ρ, T, x). (24)

We now require only one consistency relation, obtained from a suitable linear combination of
the partial consistency relations (20), e.g.,

ρ
∂2u

∂ρ2
= ∂

∂β

(
1 − 1

ρ

∑
i j

ρiρ j c̃i j(q = 0)

)
= ∂

∂β

(
1

χred

)
. (25)

By using the assumption K11 = K22, we have added an additional approximation that
goes beyond the definition of the SCOZA, and we must expect the resulting numerical results
to be less highly accurate than those obtained in applications that use nothing but the ansatz
that defines the SCOZA. To check the accuracy of this additional approximation, a detailed
comparison with Monte Carlo simulations is planned [32]. Nevertheless, our binary mixture
results capture the full range of critical and tricritical behaviour that one would expect in an
exact analysis.

The derivation of the SCOZA PDE follows, from here on, similar lines to in the one-
component case, but is considerably more complex; in addition, actual calculations require a
substantial amount of computing time. Again, the compressibility can be expressed by the
coefficients ai of the factor functions Qi j(r), so (16) now reads

ρ
∂2u

∂ρ2
= 2

∑
j

x j
a j

(2π)2

(∑
ν;rs

∂a j

∂Gν;rs

∂Gν;rs

∂u

)
∂u

∂β
= B(ρ, u)

∂u

∂β
. (26)
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The a j , ∂a j/∂Gν;rs , and ∂Gν;rs/∂u have to expressed as functions of ρ and u. The PDE (26) is
a quasilinear PDE of diffusion type which has to be solved numerically for different x-values
on a (β, ρ) grid, [0, β f ] × [0, ρ0]: the initial condition (β = 0) is obtained by making use
of the fact that the direct correlation functions ci j(r) coincide with those of a one-component
HC system; for the boundary condition on the high-density side we take again the HTA. As
in the one-component case, we have to exclude the region where thermodynamic stability
requirements are not satisfied. However, we now have to distinguish between two types of
instability, i.e. material and mechanical instability (for details cf [30]).

Thermodynamic properties are calculated—similarly to in the one-component case—via
thermodynamic integration:

∂

∂β
(β P) = −u + ρ

∂u

∂ρ
(27)

∂

∂β
(βµ1) = ∂u

∂ρ
+

(1 − x)

ρ

∂u

∂x
(28)

∂

∂β
(βµ1) = ∂u

∂ρ
− x

ρ

∂u

∂x
. (29)

The symmetry of the system induces symmetry relations in the correlation functions and hence
in the thermodynamic properties. For instance, for the chemical potentials and for the pressure
we find

µ1(ρ, T, x) = µ2(ρ, T, 1 − x) (30)
P(ρ, T, x) = P(ρ, T, 1 − x). (31)

3. Results

3.1. One-component case

3.1.1. Phase behaviour of fullerenes. The standard test system of liquid-state theories is
the LJ system. In [6] the LJ interaction was approximated by a suitable HC–two-Yukawa-tail
interaction; on the basis of this model it was shown that the SCOZA is indeed able to reproduce
the computer simulation data for the critical point and the liquid–gas coexistence curve very
accurately.

In this contribution we focus on the Girifalco potential, a sphericalized interaction between
the C60 molecules derived in [20]: this was done under the assumption of a uniform distribution
of the carbon atoms on the surface of a rigid sphere (of diameter R) and a LJ interaction between
the carbon atoms of different molecules. The potential is given by

�(r) = −α

[
1

s(s − 1)3
+

1

s(s + 1)3
− 2

s4

]
+ β

[
1

s(s − 1)9
+

1

s(s + 1)9
− 2

s10

]
(32)

with s = r
R , α = N 2 A

12R6 , β = N 2 B
90R12 , where N is the number of carbon atoms of the fullerene

molecule; A = 32 × 10−60 erg cm6 and B = 55.77 × 10−105 erg cm12 are the parameters of
the LJ potential between the carbon atoms. We have summarized the parameters R, α, and β,
along with R0 and ε (i.e., the zero and the depth of the potential) in table 1. In figure 1 we
show a LJ and a Girifalco potential (C60) in reduced units: potential energies are expressed
in units of the well depth, the range in units of the zero of the potential. Three facts become
obvious: the repulsive part of the Girifalco potential is much stiffer, and its attractive part is
much shorter ranged and—when comparing the depth in ‘real’ units—much deeper than the
LJ interaction.
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1 1,2 1,4 1,6 1,8 2

r/σ
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0

2

4

φ
ε

(r
)/

Girifalco
Lennard-Jones

Figure 1. The LJ potential and Girifalco potential (C60), as labelled, in reduced units: potential en-
ergies are expressed in units of the well depth (ε), the range in units of the zero of the potentials (σ ).

Table 1. Parameters of the Girifalco potential (32) for model C60 and C70 studied in this contribution
(see the text). Distances are given in nm, ε/kB in K, and α and β are in units of 10−15 and 10−18 erg,
respectively [34].

R R0 ε/kB α β

C60 0.71 0.9599 3218 74.94 135.95
C70 0.762 1.011 3653 66.7 79.23

In order to make �(r) ready for use in the extended SCOZA framework, we proceed in
the following way: we replace the harsh repulsion of �(r) for r < R0 by a HC potential
of diameter σ and approximate for r > R0 the purely attractive part of �(r) by a linear
combination of three or four Yukawa tails, leading thus to w(r) of the form (2). Solution of the
SCOZA gives the critical point and the coexistence curve; the triple point is estimated from
the intersection of the liquid–gas coexistence curve with the freezing line; the latter is obtained
from an entropic criterion [33] which is known to give accurate results. The thermodynamic
and structural data required in this criterion are readily provided by the SCOZA.

The SCOZA results for the critical and the triple-point parameters are summarized, along
with data from Gibbs ensemble Monte Carlo (GEMC) simulations [34, 35], in table 2. We
find excellent agreement for the location of the critical point. Also the results for ρt agree
very well; however, discrepancies are observed for Tt : this might be due to the fact that the
GEMC results are based on an extrapolation of the gas–liquid coexistence curve, while our
coexistence curve is determined down to and even below Tt . Two remarks are in order:

(i) The particular features of the Girifalco potential mentioned above can lead to numerical
complications in other liquid-state theories, such as the HRT [21]. Therefore the fact that
the SCOZA is able to reproduce simulation results very accurately can be considered as
a further indication of the wide applicability of this advanced liquid-state theory.

(ii) The specific features of the Girifalco potential have led to a still ongoing discussion on
the existence of the liquid phase in fullerenes; for details we refer the reader to [34], one
of the most recent publications on this subject.
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Figure 2. The phase diagram of model C60 calculated via the SCOZA. Full curve—liquid–vapour
binodal; dotted curve—spinodal; broken line—freezing line as estimated from an entropic criterion
(see the text); symbol—critical point from GEMC simulations [35].
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2400

T
[K

]

Figure 3. The phase diagram of model C70 as calculated via the SCOZA. Full curve—liquid–
vapour binodal; dotted curve—spinodal; broken curve—freezing line as estimated from an entropic
criterion (see the text); symbol—critical point from GEMC simulations [34].

3.1.2. Phase behaviour of systems with density-dependent potentials. Having found further
evidence that the SCOZA is able to localize the critical point of a simple fluid very accurately,
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Table 2. Results for the triple point and the critical point of model C60 and C70 described via the
Girifalco potential (see the text): SCOZA versus Gibbs ensemble Monte Carlo (GEMC) simulations
(for different particle numbers N ).

GEMC [35]

C60 SCOZA N = 300 N = 600 N = 1500

Tt (K) 1388 — 1500–1700 —
ρt (nm−3) 1.03 — 0.91–1.0 —
Tc (K) 1957 1924 1927 1941
ρc (nm−3) 0.432 0.39 0.40 0.42

C70 SCOZA GEMC [34]

Tt (K) 1531 1650
ρt (nm−3) 0.879 0.88
Tc (K) 2113 2140
ρc (nm−3) 0.372 0.376

we are now able to study the following problem on a quantitative level: we consider an
explicitly density-dependent pair potential, �(r) = �HC(r) + w(r; ρ), using for w(r; ρ) a
Yukawa potential, i.e.

w(r; ρ) = −ε

r
exp[−z(ρ)(r − σ)] r > σ. (33)

The density dependence is introduced via the inverse screening length z(ρ), using the same
functional form as the one proposed for the exponent of the inverse power potential of a recent
van der Waals study by Tejero and Baus [36]:

z(ρ)σ = 1.6 +
z0σ − 1.6

1 − 2
3αρ + 1

6α2ρ2
. (34)

Two parameters enter this expression, z0σ and α; in figure 4 we show z(ρ) for the two different
values of z0σ considered in this study and for one selected α-value. We observe a non-
monotonic behaviour for z(ρ) as a function of ρ, where, depending on the value of z0σ , the
maximum is more or less pronounced.

It should be pointed out that for the particular case of an explicitly density-dependent
potential the standard relations for the thermodynamic routes have to be reconsidered. In
fact, the usual expression for the virial has to be reformulated, while the energy and the
compressibility routes are still valid. Since the SCOZA is based on the latter two routes, we
can leave the virial route aside; if the pressure is required it can be obtained via thermodynamic
integration of the energy (cf (18)).

In the mean-field study mentioned above, the authors observed for selected sets of
parameters a gas–liquid and a liquid–liquid phase transition, each with its own critical points;
in some cases these transitions were metastable, covered (partially) by a stable vapour/liquid–
solid transition. In a subsequent study [37] based on computer simulations and conventional
liquid-state theories, similar results were observed; agreement between the different methods
was rather on a qualitative level.

The SCOZA offers us the possibility to study these phenomena on a quantitative level.
We have solved the SCOZA for the above interaction (33), (34) and have determined the
phase behaviour. Indeed, for suitable parameters z0σ and α we could observe a gas–liquid
and a liquid–liquid transition, each with its own critical point. The parameter range where this
double criticality can be observed is, with respect to both z0σ and α, rather narrow. In figure 5
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Figure 4. The density dependence of the inverse screening length z(ρ) of the HCY potential of
equation (33), given by equation (34) for two selected values of z0σ (as labelled); α = 5.7v0 with
v0 being the hard-sphere volume.

we show a series of phase diagrams, fixing z0σ = 1.8 and varying α from 0 (corresponding
roughly to a density-independent zσ ≡ 1.8) to large α (corresponding to a density-independent
zσ ≡ 1.6). Around α ∼ 5.5v0 (v0 being the volume of the sphere), we observe two clearly
separated phase transitions, the related two critical points, and the triple point (marked by a kink
in the coexistence curve). A closer analysis shows that the α-range where this phenomenon
is observed is only 5.34 � α/v0 � 5.75. Note that as we vary α from zero to infinity
(approximated by α = 100v0), the critical parameters, Tcr and ρcr, vary strongly with α. In
addition we have found that the position of the two critical points can be shifted via z0. To be
more specific, we succeeded in merging the two critical points into a confluent critical point.
This situation is shown in figure 6 where we depict three phase diagrams for z0σ = 1.65. For
the intermediate value of α, we observe a confluent critical point. In figure 7 we have shown
the coexistence densities ρl and ρv as functions of (−t)1/4: the two curves are nearly straight
lines. This is a clear indication that the critical exponent β ∼ 1/4, which is the expected exact
value for a three-dimensional system.

3.2. Binary symmetric case

We present results for the phase diagram of a binary symmetric mixture. As a consequence
of the restricted number of parameters, the phase behaviour of such a system can be studied
very easily in a systematic way; the parameter that triggers the phase behaviour is α, the
ratio between the unlike and the like interaction, introduced in (21). Despite its simplicity,
we encounter a surprisingly rich phase behaviour for this system, including phenomena such
as critical lines, critical end-points (CEP), and tricritical points. A qualitative study of these
phenomena based on a mean-field model has been presented by Wilding et al [38]. We expect
four phases, the vapour (G), the mixed fluid (MF), and two phases of a demixed fluid (DF)—a
1-rich and a 2-rich fluid; the latter ones are often counted—as a consequence of the symmetry
with respect to x—as one single phase.

To calculate the phase diagram, the equations that determine coexistence, i.e. equal
chemical potentials and equal pressure of the coexisting phases at a given temperature, have
to be solved. Characterizing coexisting phases by (ρ, x) and (ρ ′, x ′) we proceed as follows:
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Figure 5. Phase diagrams of a HCY potential with an explicitly density-dependent screening length
(see the text) for z0σ = 1.8 and α-values as indicated (see equation (34)). α = 0 corresponds
to a density-independent screening length zσ ≡ 1.8, while α = 100v0 (approximating the case
α = ∞) corresponds to a density-independent screening length zσ ≡ 1.6. Full curves—binodals;
broken curves—spinodals; T � = kBTσ/ε, ρ� = ρσ 3.

the G–MF coexistence curve is obtained by solving the set of equations

µi (ρ, T, x = 1/2) ≡ µ(ρ, T, x = 1/2) = µ(ρ ′, T, x = 1/2) (35)
P(ρ, T, x = 1/2) = P(ρ ′, T, x = 1/2). (36)

For the G–MF and the MF–DF transitions we proceed in two steps: first we determine the
phase diagram of the demixing transition, i.e. at a given temperature T we search for two
coexisting states with the same fluid density but different composition by fixing ρ = ρ ′ and by
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Figure 6. Phase diagrams of a HCY potential with an explicitly density-dependent screening
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curves—spinodals; T � = kBT σ/ε, ρ� = ρσ 3. The inset (α = 7.14v0) shows an enlargement of
the ‘near-tricritical’ region.

determining concentrations x and x ′ = 1 − x of the coexisting phases. Then the equilibrium
condition for the pressure is automatically fulfilled, while the equilibrium conditions for the
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chemical potentials become, at given T and ρ,

µ1(ρ, T, x) = µ2(ρ, T, x) (37)

which defines the line x(ρ) of the second-order demixing transition, if it exists. Along this
line the chemical potentials of the two species are equal by construction and are denoted by
µ[T, ρ, x(ρ)]. In a second step the solution of the two equations

µ[ρ, T, x = 1/2] = µ[ρ ′, T, x(ρ ′)] (38)
P[ρ, T, x = 1/2] = P[ρ ′, T, x(ρ ′)] (39)

gives the density ρ of the G or MF and the density ρ ′ of the DF with concentrations x(ρ ′) and
1 − x(ρ ′), in equilibrium. In figure 8 we present the projection of the phase diagram of the
binary symmetric mixtures onto the (T, ρ) plane for three different values of α (as indicated).

The parameter α entirely triggers the phase behaviour of the system. If α � 1, we
observe only a G–MF transition, the critical line is absent. The situation is more interesting
and more complex for α < 1: here we have a competition between the G–MF transition and
the demixing transition; the latter is characterized by the λ-line, i.e. the critical line of the
demixing transitions. Depending on the interplay of these two types of phase transition, one
can distinguish three types of phase diagram (see figure 8).

(i) For type I, the λ-line approaches the G–MF coexistence curve well below the critical point
and intersects the first order G–MF curve at a CEP: here, a critical liquid coexists with
a non-critical gas. Above TCEP a gas and a homogeneous liquid of intermediate density
coexist, becoming identical at the G–MF critical point. Upon increasing the densities,
the liquid demixes as one crosses the λ-line. The (full) curve below the CEP temperature
(cf bottom panel in figure 8) is a triple line where a gas, a 1-rich liquid, and a 2-rich liquid
coexist.

(ii) For type III the λ-line meets the G–MF line at the G–MF critical point. In that case
the first-order transition between the gas and the mixed liquid is absent and the λ-line
ends at a tricritical point where three phases become critical at the same time: a gas, a
1-rich liquid, and a 2-rich liquid. Here, two order parameters—the difference between
the coexisting liquid and vapour densities and the concentration difference—vanish at the
same time. Tricriticality is, by the way, a specific feature of the symmetric model, which
is not encountered in a general binary fluid [39].
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Figure 8. The phase diagram of a binary symmetric mixture (as defined in the text), projected onto
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where the different phases exist are labelled by acronyms (MF—mixed fluid; DF—demixed fluid).
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(iii) Finally, type II represents the intermediate case, where the λ-line approaches the G–MF
coexistence curve slightly below the critical point. As in type I, one finds a critical point
of the G–MF transition and, like for type III, a tricritical point. In addition, this type
is characterized by a triple point where—to be correct—four phases coexist: a gas, a
mixed liquid at intermediate density, and a 1-rich and a 2-rich liquid at high density. In
figure 8 the α-values are chosen such that each of the above-defined phase diagram types
is represented. Note that in contrast to conventional liquid-state methods (cf [40]), the
SCOZA can be solved also in regions very close to the critical points.
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Concluding, it should be pointed out that similar archetypes of phase diagrams are also
encountered in other liquid systems with completely different interatomic interactions, such
as the Heisenberg fluid [41] and the Stockmayer fluid [42].

4. Conclusions

We have presented a generalization of the formalism of the SCOZA, a liquid-state theory
that is able to predict the location of the critical point and of the liquid–vapour coexistence
curves of a simple fluid with high accuracy. By including formally an arbitrary number of
Yukawa tails in the attractive part of the HC interaction of the system we are now able to
treat systems with potentials that can be approximated by a suitable linear combination of
Yukawa tails. This generalization is realized by fully maintaining the attractive advantages of
the availability of the (semi-)analytic solution of the MSA for a HC–multi-Yukawa-tail fluid.
We first tested the accuracy of our SCOZA version in a direct comparison with accurate GEMC
results for model fullerenes and found excellent agreement for the critical point. In view of
this, we then determined the phase behaviour of a HC–one-Yukawa-tail system where the
inverse screening length z(ρ) is explicitly density dependent; to be more specific, z(ρ) shows
a non-monotonic behaviour as a function of the density ρ. Depending on the parameters that
define the functional dependence of z(ρ) on ρ, we observe up to two critical points that can
even be merged into a tricritical point; evidence for this is found from an analysis of the critical
exponent β. We observe a value for β that is consistent with 1/4, i.e. the mean-field value
for a tricritical point, which is also the expected exact value in a three-dimensional system.
Finally, we apply the SCOZA to the case of a binary symmetric mixture, for which an additional
approximated relation was used to close our equations. We are able to identify three archetypes
of phase diagrams that are characterized by the loci where the critical line of the demixing
transitions intersects the first-order liquid–vapour coexistence line. In contrast to conventional
microscopic liquid-state theories, such as the optimized random-phase approximation and
integral equation theories, the SCOZA can be solved in regions very close to the critical
points.

Acknowledgments
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